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A two-dimensional Stokes flow close to the line of contact of two touching cylinders 
or three-dimensional axisymmetric ,Stokes flow close to the point of contact of two 
touching bodies is shown in general to separate into infinite sets of eddies with angles 
of separation from the bodies which tend to 58.61' as the line or point of contact is 
approached. The flow near the vertex of a conical cusp is shown to be a system of 
nested toroidal vortices and the separation angles tend to 45.25' as the vertex is 
approached. Stokes flow between parallel planes or within a circular cylinder is shown 
in general to separate far from the generating disturbances with cellular eddy 
structure and separation angles which tend to 58.61' and 45.25' respectively. The 
mathematical equivalence of the various problems is established. 

1. Introduction 
I n  the past few years examples oS Stokes flows that exhibit separation and eddy 

formation have appeared in the literature. Moffatt (1964) showed that in general the 
flow between planes which intersect a t  an angle of less than about 146.3' has an eddy 
structure close to the corner and an infinite sequence of line vortices is formed whose 
strength diminishes exponentially as the corner is approached. More recent 
investigations have shown that the phenomenon of multiple eddy formation is 
widespread in both two- and three-dimensional flows involving either planes or 
finite-sized bodies, and much of this work is reviewed in the articles by Hasimoto 
& Sano (1980) and Liron & Blake (1981). 

Davis et al. (1976) showed that, in an axisymmetric streaming flow past two equal 
spheres in contact, the flow separates from the spheres near the point of contact and 
an infinite set of nested toroidal vortices is formed. For two-dimensional linear shear 
or stagnation-point flow over a cylinder touching a plane, Davis & O'Neill (1977a, b )  
showed that an infinite set of line vortices is formed near the line of contact. An 
interesting feature arising from these three studies is that the angle at which the 
separating streamlines detach from (or attach to) any of the boundaries tends to the 
same limit 58.61' as the point or line of contact is approached. This leads one to 
conjecture if this is a universal angle for separation from bodies of arbitrary shape 
in either two- or three-dimensional Stokes flows, and in this paper it is shown that 
this is indeed generally true for both1 two-dimensional flows about cylindrical bodies 
in contact and for three-dimensional axisymmetric flows about axially symmetric 
bodies in contact. 

Another type of separating Stokes flow is the axisymmetric streaming flow past 
a closed torus. In  this flow, Dorrepaal et al. (1976) showed that infinite sets of nested 
ring vortices form within the central cylindrical cusps. Bourot (1975) showed, in his 
numerical study of axisymmetric streaming past a cardioid of revolution, that a 
similar eddy structure develops in the cusp. I n  this paper it is shown that this is a 
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feature of any axisymmetric flow about an axisymmetric body of arbitrary shape with 
cylindrical cusps. The angle of separation of the streamlines from the body now tends 
to the constant value 45.25’ as the vertex of the cusp is approached. These examples 
illustrate how a local geometrical feature can profoundly influence the character of 
the local flow to such an extent that  a purely local analysis can provide the form of 
the stream function, apart from a scaling factor, and hence all local flow properties 
can be qualitatively deduced. The elliptic nature of the boundary-value problem for 
the stream function must of course necessitate reference to the exact form of the global 
flow about the body in order to  determine the value of the scaling factor as pointed 
out by Michael & O’Neill (1977) in the context of separation from quasiplanar 
boundaries. 

Moffatt’s analysis of corner flow between intersecting planes included an example 
of cellular eddy flow between parallel planes which can be interpreted as the limiting 
form of the corner flow as the angle between the planes approaches zero in such a 
way that their distance apart approaches a constant value. Hancock (1983) has 
calculated the angle of separation for flow in corners of various angles and has shown 
that, in this limit, antisymmetric flow separates from the parallel plane walls at 
58.61’. In  this paper, i t  is shown that, in general, any Stokes flow between parallel 
plane walls whose velocity decays to zero in at least one direction, say x++oo, 
ultimately has an antisymmetric cellular eddy structure with separation streamlines 
detaching from the walls at 58.61’. For the corresponding flow in a circular cylinder 
a similar effect, occurs, with the flow ultimately possessing a cellular toroidal eddy 
structure with the separating streamlines now detaching at 45.25O from the cylinder. 
The fact that these separation angles are identical with those occurring as a result 
of local boundary geometry is shown to follow, since by a suitable inversion 
transformation the asymptotic solution associated with a local boundary geometrical 
property of the type considered, i.e. contact or conical cusp, is mathematically 
equivalent to the far-field asymptotic solution for flow between parallel planes or 
within a circular cylinder. 

2. Flow near the contact line of two touching cylindrical bodies 
Let us consider a two-dimensional Stokes flow near the line of contact of two 

cylindrical bodies B, and B, a t  rest and let 0 be the point where any plane section 
perpendicular to the axes of the bodies intersects the line of contact. Let the boundary 
sections of the bodies have circles of curvature C, and C, a t  0 and the radii of 
curvature be R, and R, respectively. The geometry is illustrated in figure 1.  

If (x, y) denote Cartesian coordinates in this plane with 0 as origin, the equation 
of B, can be written as 

y = F,(x) = F,(O)+F;(O)x+p;(O)x2+ ... (2.1) 
in the neighbourhood of 0. But e(0) = F;(O) = 0 and R, = (1 + I F;(O) I ,}>t/ I F;(O) I 
assuming F;(O) =k 0. Consequently F”(0) = f Ryl, with the + sign chosen if B, is 
concave towards the positive y-axis a t  0. Without loss of generality we may assume 
this configuration and the equation of B, is accordingly given locally by the equation 
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FIQURE 1. Two touching cylindrical bodies. 

The equation of the circle of curvature C, is (y- R,),+x2 = Ri, giving 

near 0, showing that B, and C, have the same equation sufficiently near to the point 
of contact 0 provided that F;(O) =l= 0. Similarly the body B, and its circle of curvature 
C, have the same equation near 0, a.nd this is given by 

where the - or + sign is chosen awording as B, and B, make contact externally 
or internally, as illustrated in figure 1. On making x and y dimensionless relative to 
R, and writing 1011 = R,/R,, with the sign o f a  negative if B, and B, touch externally, 
the equations of B, and B, are given locally by 

y = Bx2, y = +ax2 (2 .5)  
respectively, showing that 2y/x2 is a similarity variable for the problem. This suggests 
introducing variables 6, 7 defined by 

The curves 6 = constant are parabolas which touch a t  x = 0, and the curves 
7 = constant are straight lines. The bodies B, and B, are given by 6 = 1 and = a 
respectively, as illustrated in figure 2. The origin x = y = 0 corresponds to 7 = 00.  

The level surfaces in this coordinate system are generally not orthogonal bi,t 
approach orthogonality as the point of contact is approached, corresponding to  
7 + co. It is assumed that the flow in the neighbourhood of the point of contact 0 
is a steady or quasi-steady Stokes flow, so the boundary-value problem for the stream 
function $ is to find a solution of 

satisfying $ = a$/& = 0 on B,  and B,, with n denoting distance along the normal 
to either boundary. To determine the complete solution to the problem, an appropriate 
condition defining the generation of tQe global flow away from 0 must be prescribed, 
but this condition is not required in order to  determine the structure of the flow in 
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v = q 1  

FIQURE 2. The level surfaces 5 = constant and T = constant. 

the neighbourhood of 0. I n  terms of the E,?  variables, the boundary conditions are 

and noting that if the Laplace operator is expressed in 

12.8) 

these coordinates, 

(2.9) 

as 7 +  00,  it  follows that for large 7 the solution for + in separated variables takes 
the form 

where the parameter s may be complex and A ,  B,  C, D are functions of s. The + or 
- sign is chosen so that + + O  as 7 +  00 and i t  is understood that the real part of 
the right-hand side of (2.10) is taken. The boundary conditions on the bodies require 
that 

+ = 7-,{ ( A  + [C) sinh 86 + ( B  + CD) cosh sc} e*i57, (2.10) 

( A  +&) sinh s t+ (B+(D)  cosh sC = 0 ( E  = 1, a), (2.11) 

(sA+&sC+D)coshsC+(sB+(sD+C)sinhsc = 0 (6  = l ,a) ,  (2.12) 

giving four equations for A ,  B ,  C, D. Consistency of these homogeneous equations 

(2.13) 
requires that 

s2(1-a)2-sinh2s(l-a) = 0, 

and the solutions of this equation give rise to the set of permissible eigenvalues for 
the problem. On writing s(1 -a) = iz, (2.13) gives 

sinz+z = 0 or sinz-z = 0. (2.14) 

Equations (2.14) are the same pair of equations which arise in the analyses of Dean 
& Montagnon (1949) and Moffatt (1964) for flow in a corner formed by intersecting 
planes. Apart from z = 0, which leads to the trivial solution for +, the roots of these 
equations are respectively z = f A,, z = f y,, arranged in the order of increasing real 
parts, and their conjugates. These roots have been accurately tabulated by Buchwald 
(1964) and the first few arc listed below 

A, = 4.213+2.251i, 

y1 = 7.499+2.769i, 
(2.15) 

A, = 10.713+3.103i, 

,u2 = 13.900+3.3523. 
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It therefore follows that, near the line of contact, the stream function @ generally has 

(2.16) 
the asymptotic form @ = 7-2 Re A, f,(E) e-A1v/(l-a), 

unless A, = 0, in which case the appropriate asymptotic form is then 

where 

. r U l ( E - 4  rUl(1-0 
gl(E) = (1 - 6 )  sin (6-  a) sin 

l -a  l -a  

(2.18) 

(2.19) 

The functions f,(E) and gl(E) are respectively even and odd functions about 
E = $(a+ 1 ) .  Thus, in general, any Stokes flow of the type considered is antisymmetric 
about the midsurface 6 = i(a+ 1) sufficiently close to the line of contact, and its 
stream function is given asymptotically by (2.16). 

Although the constant A ,  is indeterminate without reference to the global flow 
about the bodies, many qualitative features of the flow behaviour can be obtained 
by examining (2.16). For instance it is clear that, for any fixed value of 6,  the stream 
function vanishes an infinity of times as 7 + 00. This means that there are an infinity 
of branches of the streamline @ = 0 linking the bodies in the neighbourhood of the 
line of contact, indicating the existence of an infinite set of nested eddies similar in 
type to those shown to exist by Davis & O’Neill (1977a, b )  for a cylinder touching 
a plane wall in a linear shear flow. The equations of the eddy cell boundaries where 
$ = 0 are 

showing that the difference between values of 7 on successive branches is the constant 
~ ( 1  -a)/Im (Al) .  Where these curves intersect the bodies are the points of separation 
or attachment for the flow. The points where separation occurs on B, are given by 
6 = 1 , ~  = qs, where 

(2.20) ~ ( 1  -a)-, Im (A,)  = arg A ,  + argfl(E) + (m-8)  7c ( E  4 1 ,  a), 

= 0 ( E  = 1 ,  7 = T S ) ,  
3 
a t z  

whose solutions are given by 

qs( 1 - a)-, Im (A,) = arg A, + arg A, + arg (1 + cos A,)  + (m - 8) R. (2.21 ) 

The values of at  the points of Separation on body B ,  are also given by (2.21). On 
expanding @ in the neighbourhood of a typical separation point, the angle of 
separation can be found. For body 13, 

The angle y at which the streamline separates from this surface is accordingly 

However, at this separation point 

(2.22) 
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and noting that a t  the separation point 

9 = -2~,-~(1--a)-~Re{A,A,(1+cosA,)e-~~~~'-"~} = 0, at2 
i t  can be shown that (2.22) reduces to  

3 Im ( -Al) 
Im { A : / (  1 + cos A,)} 

y = tan-' 

= 58.61'. 3 Im (4) = tan-, 
Im (cos A,) 

(2.23) 

A similar analysis reveals that  this is also the value of the angle of separation from 
the body B, as the line of contact is approached. This is the angle of separation which 
was shown by Davis & O'Neill(1977a, b )  to occur in two-dimensional linear shear or 
stagnation-point flow over a circular cylinder touching a plane as the line of contact 
is approached. 

The angle of separation is evidently 58.61', provided that the dominant term in 
the stream function is given by (2.16), and this will generally be the case for an 
arbitrary flow when @ is neither odd nor even about the midsurface = +(a+ 1). If, 
however, the flow is purely symmetric about this surface, as in the streaming flow 
past two cylinders in contact when the direction of the stream is perpendicular to 
the plane containing the axes of the cylinders, which was studied by Dorrepaal & 
O'Neill (1978), then only the terms involving the eigenvalues p,, appear in the 
solution, and the appropriate asymptotic form for @ is then given by (2.17). The 
corresponding angle of separation from each of the bodies is then 

(2.24) 

This was the angle obtained by Davis (1979) for the flow considered by Dorrepaal 
& O'Neill. However, for unequal-sized cylinders the purely symmetrical property of 
the flow is lost and the limiting separation angle is then 58.61'. If the stream flows 
parallel to the plane containing the axes of the cylinders, the flow is purely 
antisymmetrical for equal-sized cylinders, thus, for any two cylinders in this type of 
stream, the separation angle accordingly has the limiting value of 58.61'. 

3. Flow near the point of contact of two touching axisymmetric bodies 
Two axisymmetric bodies B, and B, touch a t  0 and have a common axis of 

symmetry passing through 0. Obvious examples are two spheres or a spheroid 
touching a plane, and the geometry is illustrated in figure 3. 

If the principal radii of curvature of the bodies are respectively R, and R,, and 
( r ,  8, z )  denote cylindrical polar coordinates with pole at 0 and the z-axis coinciding 
with the axis of symmetry of the bodies, i t  follows that in the neighbourhood of 0 
the equations of B, and B, are given by 

respectively. On making r ,  z dimensionless relative to R,, and writing R, = lal--l&, 
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FIGURE 3. Two touching axisymmetrical bodies. 

where the sign of a is chosen to be positive or negative according as B,  touches B, 
internally or externally, it is clear that z / r 2  is a similarity variable and it is natural 
to introduce coordinates f ; ,  7 defined by 

The surfaces = constant are paraboloids which touch at  0 and 7 = constant are 
cylinders with axes along the axis of symmetry of the bodies. Although the level 
surfaces are not orthogonal in general, they approach orthogonality as 7-f CO, i.e. as 
the point of contact between B, and B, is approached. Near 0 the bodies are defined 
by f ;  = 1,a. 

It is assumed that there is an axisymmetric steady or quasisteady Stokes flow about 
the bodies, thus the cylindrical polar components of velocity (u ,O,w) can be 
expressed in terms of a stream function $ as 

where $ satisfies the equation 

The boundary conditions of no slip on the bodies require that 

In terms of the 5 , ~  variables, (3.6) are 
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and noting that as r+ 00 

it follows that the solutions for the stream function near the point 0 can be 
represented by 

with the + or - sign chosen so that $+O as 7-f 00 in order to satisfy the boundary 
conditions a t  the point of contact. Comparing (3.8) with (2.10), it is clear that s must 
satisfy the same equation (2.13) of $2, and consequently the stream function in the 
neighbourhood of 0 has the form 

$ = r+{(A+cC)sinhst+ (B+cD)co~hse}e*~~V, (3.8) 

$ = 7-f ReAlfl(f;) e-A~7/(1-a), (3.9) 

unless A, + 0, when the appropriate asymptotic form is then 

$ = 7-i Re Algl(<) e-PiV/(l-a), (3.10) 

withfi(e) and gl(f;) given by (2.18) and (2.19). It therefore follows that the analysis 
and deductions for the two-dimensional flows discussed in $ 2  carry over completely 
to the axisymmetric three-dimensional problem. I n  general, the flow will not be purely 
antisymmetrical about the midsurface c = ;(a+ l), and (3.9) will be the correct 
asymptotic form in the neighbourhood of the point of contact. 

The equations determining the branches of the stream function $ = 0 which detach 
from the bodies and the separation points are again given by (2.20) and (2.21). The 
angle of separation will therefore in general tend to the limit 58.61’ as the point of 
contact is approached. For a purely antisymmetrical flow, such as axisymmetric 
stagnation-point flow past two equal spheres, discussed by Davis (1979), only terms 
involving p, appear in the solution. The stream function is therefore given 
asymptotically by (3.10), which leads to a limiting separation angle given by (2.24), 
i.e. 48.15’. However, this example of antisymmetric flow exists only if the spheres 
have equal radii. For unequal-sized spheres the dominant term arises from the 
symmetric part of the flow, and this leads to a limiting separation angle of 58.61’. 

4. Axisymmetrical bodies with conical cusps 
Consider a body B with a re-entrant boundary which is locally a conical cusp. 

Examples of such a body are the closed torus or cardioid of revolution. If the body 
is symmetric about an axis through the cusp then in terms of cylindrical polar 
coordinates with pole a t  the vertex 0 of the cusp and z-axis along the axis of 
symmetry, the equation of the body can be written as 

= ~ ( z )  = +F”(o) z 2 +  0 ( ~ 3 )  (4.1) 

in the neighbourhood of 0. Letting r and z be dimensionless relative to  1/1F”(O)I, 
assuming F ( 0 )  =k 0, the equation of the body near 0 has the form 

r = +z2+O(z3) .  (4.2) 

A suitable transformation of variables is now 

(4.3) 

in which case the body B is given by 9 = 1 near 0, where f ;  % 1 and the axis of 
symmetry is given by 71 = 0. 
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L?l$ = 0, 

a$ $ = - = 0  ( 7 = 1 )  
a7 
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If the flow in the neighbourhood of 0 is symmetric about 7 = 0, the stream function 

(4.4) 
$ satisfies the equation 

the operator being defined in (3.5). A solution of (4.4) is required that satisfies the 

(4.5) 
boundary conditions 

and $ 4 0  as 6 4 ~ 0 .  

orthogonal, and the relation 
For large 6, the level surfaces 6 = constant and 7 = constant are approximately 

holds when 6 9  1. Thus a solution of (4.4) which is bounded on 7 = 0 is 

$ = 6-37{(A11(s7)+B710(s7)}e'is~, (4.6) 

where I ,  is the modified Bessel function of the first kind of order n (n = 0, l ) .  In (4.6) 
the sign is chosen to ensure that $ + O  as E-+ 00 and the real part of the expression 
for $ is understood to be taken. The boundary conditions on the body lead to the 
homogeneous equations 

AI,(s)+BIo(s) = 0, (4.7) 

(4.8) 

r ~ 1 ( ~ ) l 2 - - ~ O ( 4  Us)  = 0. (4.9) 

A[I,(s) + 4 ( s ) l +  B[2I,(s) +sI;(s)] = 0, 

and consistency of these equations in turn leads to the equation 

Excluding s = 0, which leads to the trivial solution for $, the solutions of (4.9) are 
s = & C, and their conjugates, with 5, lying in the first quadrant of the complex s-plane, 
and arranged in order of increasing imaginary part. The first two values of 5, were 
calculated by Dorrepaal et al. (1976) and found to be 

fl = 1.467+4.466i, Q = 1.727+7.694i. (4.10) 

A property of the solutions of (4.9) is that 

Re (Cn) > Re Im (Cn) > Im ( 6 - 1 )  (n 3 2) 

and that Im (C,) increases rapidly with n,  so other values of Cn can be easily calculated 
using Newton's method and the asymptotic expansions of the Bessel functions for 
large 151. The analogous equation 

Jl(Pl)"JO(P) JAP) = 0 

arises in Sonshine, Cox & Brenner's (1965) analysis of the Stokes translation of a 
particle of arbitrary shape along the axis of a circular cylinder. These authors have 
calculated the first 46 values of P correct to eight significant figures. Hence, noting 
that C,, = i Pn, further solutions for Cn (n > 2) are available, but will not be required 
here. 

It therefore follows that near the cusp the stream function has the asymptotic form 

(4.11) 

where 6 9 1. For any fixed value of 7, the stream function vanishes infinitely many 
times as the vertex of the cusp is approached, indicating the existence of a nested 
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set of toroidal vortices whose centres lie along the z-axis. The equations of the 
branches @ = 0 which span the walls of the cusp and form the boundaries of the 
toroidal vortices are given by 

- 6 R e G )  = argA,+argf,(r)+(m-t)n (7 * 0, I ) ,  (4.12) 

where 

These surfaces meet the z-axis or r,~ = 0 in stagnation points a t  which 6 = EM, where 

- & Re ( C1) = arg A ,  + arg 6, - m] + (m - $) n. [ IO(51) 
(4.13) 

Separation from the boundary of the body occurs where 6 = ts, 7 = 1 ,  with 

- 6s  Re ( C J  = arg A1 + arg U Y 1 )  + (m - t )  n. (4.14) 

The angle of separation y a t  a separation point is now 

which can be shown to reduce to 

(4.15) 

Thus, as the vertex of the cusp is approached, the angle at  which the flow separates 
from the boundary of the body tends to this angle. This is a result which is generally 
true (i.e. A ,  + 0) for any axisymmetrical Stokes flow close to a cylindrical cusp. A 
particular body having this geometrical feature is the closed torus, and the separation 
angle of 45.25' may be verified directly in this case using the global solution for 
streaming flow past this body which was obtained by Dorrepaal et al. (1976). 

5. Flow between parallel planes 
An arbitrary Stokes flow between parallel planes y = 0 and y = 1 is considered. The 

flow is such that the non-slip condition on the planes is satisfied and a condition 
consistent with the decay of flow as x + m ,  say. The purpose of this section is to 
examine the structure of the flow as x+ GO. The problem is indicated schematically 
in figure 4. 

A solution for the biharmonic stream function satisfying the boundary conditions 

(5.1) 
is @ = {(A+By)sinhsy+ Ccoshsy}e*iSx, 

with the sign of s chosen to ensure @ + O  as x++ GO. To satisfy the conditions on 
the planes leads to a set of homogeneous equations for A ,  Band C, and the consistency 
of these equations requires that 

The roots of this equation are s = f ih,, k p n  and their conjugates, with h, ,pn given 
in $2. Thus the form taken by the stream function when x $- 1 is generally given by 

(5.3) 

(5.4) 

sinh2 s = s2. (5.2) 

@ = Re{Al{(l -y)sinh,y+ysinh,(l -y)}e-A1z}, 

@ = Re {Al{( 1 - y) sinply- y sinpl( 1 - y)} e-Pix}. 

except when A ,  = 0, in which case the appropriate asymptotic form is then 
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v 4  $ = O  

I 
IL = a u a y  = o y = o  X 

> 
FIGURE 4. Flow between two parallel planes. 

These are the forms of solution which result in corner flow between planes which 
intersect a t  angle a when a+O is such a way that a fixed distance between a fixed 
pair of points, one on either plane, is maintained, as discussed by Moffatt (1964). In  
that context (5.3) provides the limiting form corresponding to antisymmetric Aow 
and (5.4) provides the limiting form to symmetric flow. It is therefore apparent that 
an arbitrary Stokes flow of the type postulated eventually becomes antisymmetric 
as x+ 00. Furthermore, the flow pattern is such that an infinite set of eddies in a 
cellular formation develops. The close similarity between (5.3), (5.4) and (2.16), (2.17) 
allows one to infer that the equations of the eddy cell boundaries where @ = 0 are 

xIm(A,) = argAl+arg{(l-y)sinAly+ysinAl(l-y))+(m-4)n (y $; 0 , l ) .  (5.5) 

The cells therefore have constant length n/Im (A,)  = 1.396, as well as height. The 
points of separation from the planes where these curves intersect y = 0 and y = 1 
occur where a2@/ay2 = 0, and the solutions x = x, are given by 

x,Im(h,) = argAl+argAl+arg(l+cosA,)+(m-~)n,  (5.6) 

with y = 0 or 1. 
The angle of separation a t  a typical separation point x = x,, y = 1 is evidently 

(5.7) 

and by comparison with the analysis of $2 i t  is a t  once clear that y+58.6l0 as x+ 00. 

This is the limiting angle of separation of any Stokes flow of the type considered, 
provided that its leading term for large positive values of x is given by the 
antisymmetric asymptotic form (5.3). An example is the flow produced by rotating 
a circular cylinder between two parallel planes. Here the flow would decay to  zero 
at x = - 00 as well as at x = + 00, which would imply that a cellular eddy structure 
is formed as x+- 00 also. The separation points would appear on each of the planes 
when x = +x,, with x, given asymptotically by (5.6). The angles of separation would 
now be y when x = x, and n- y when x = -x,. For this type of flow the stream 
function would be an even function of x, and if the cylinder were placed symmetrically 
between the planes, the stream function would also be an even function of y-4. Thus 
only the eigenvalues ,un would contribute to the solution. However, if the cylinder 
were not centrally located between the planes, the stream function would then no 
longer be an even function of y-4 for all x but would become such a function as 
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FIQURE 5. The separation streamlines for flow between parallel planes. The broken-line curves 
indicate the general direction of flow within the cells. 

1x1 +. co, resulting in a limiting separation angle of 58.61O. This particular angle of 
separation is somewhat surprising in view of the symmetrical character of both the 
geometry and streamline pattern on either side of the cylinder. 

A recent global study of a flow between parallel planes has been carried out by 
W. Hackborn and K. B. Ranger (1982 private communication), in which a line rotlet 
is placed at  any position between two parallel planes. An exact solution is found for 
the stream function for the flow, and the asymptotic structure of this solution at large 
1x1 is entirely in accord with (5.3) and verifies the predicted value of 58.61’ for the 
limiting angle of separation. 

From (5.5), the values xM a t  which the cell boundaries $ = 0 cross the midplane 
y = $ are given by 

xM Im (A , )  = arg A,  + arg (sin ;A,) + (m - 4) x. (5.8) 
The distance xM - x, gives the maximum displacement of a separation curve from the 
common perpendicular to the two planes through a separation point. This has the 
constant value 0.1451. It is interesting to note that this value produced by an 
asymptotic analysis for large 1x1 is reproduced in Hackborn and Rangers’ exact 
analysis from the second separation curve for all positions of the rotlet. Indeed, from 
the second cell not enclosing the rotlet and thereafter, the streamline pattern is that 
of antisymmetric flow, again no matter where the rotlet is located between the planes. 
This shows that the parallel planes plus the condition of evanescence quickly 
establishes the character of the flow whatever the precise type of flow generator. 
Figure 5 shows the separation streamlines which form the cell boundaries. 

For purely symmetric flow, when the leading term in $ as x++ 03 is given by (5.4), 
a comparison with the analysis of $2 shows that the limiting angle of separation is 
now 

(5.9) 

Hackborn and Ranger have also considered the flow generated between two planes 
by two line rotlets of opposite sense but equal strength placed symmetrically between 
and on a line perpendicular to both planes. This gives an example of a flow which 
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is purely symmetric about y = ?j. The results of these authors corroborate both the 
flow pattern and separation angle given by (5.9). 

The limiting angles of separation of 58.61' for antisymmetric flow and 48.15O for 
symmetric flow between parallel planes have also been established by Hancock (1983). 
He has calculated the angle of separation from Moffatt's solution for flow between 
planes which intersect at an angle of a. Then, by letting a+O in such a way that 
the distance between two fixed points, one on either plane, remains constant, the 
appropriate angles for symmetric and antisymmetric flow between parallel planes are 
retrieved. The nature of Hancock's limiting process is such that the vertex of the 
wedge-shaped fluid region moves to infinity. This ensures that the asymptotic 
behaviour of the stream function as infinity is approached in at  least one direction 
is exactly that prescribed in this section. 

Another related result concerns axisymmetric flow between parallel planes when 
the axis of symmetry is perpendicular to both planes. In terms of cylindrical polar 
coordinates ( r ,  8, z )  in which the planes are given by z = 0,1, the boundary conditions 

(5.10) 
require 

$ = - = o  ( z = O , l ) ,  aZ 

(5.11) 

where $ is the axisymmetric stream function. The leading term of the asymptotic 
expansion for $ when r 9 1 is in general given by 

$ = Re(A,{(l -z)sinh,z+zsinh,(l -z)}rK1(A1r))  

- R e  A,{(l-z)sinhlz+zsinh,(l-z)} - e-Alr , (5.12) 

with K ,  the modified Bessel function of the second kind of order unity and A,( =!= 0) 
is an undetermined constant. It therefore follows from analyses given elsewhere in 
this paper that for large r the flow is antisymmetric about the plane z = 8 and 
composed of a set of nested toroidal vortices which detach from the planes at  angles 
of 58.61O. An example of this flow would be the quasisteady flow caused by the 
translation of a small sphere along a direction perpendicular to both planes. If A,  = 0, 
such as in purely symmetrical flow about z = 4, the leading term in the asymptotic 
expansion for $ is then 

{ ($)" I 

(5.13) 

Now there is a system of double vortices above and below the plane z = 4, and the 
angles of separation are now 48.15'. 

6. Flow in a circular cylinder 
A circular cylinder of radius unity contains viscous fluid whose motion may be 

described as a steady or quasisteady Stokes flow which is symmetric about the axis 
of the cylinder. The flow may be generated in an arbitrary manner but is subject to 
the constraints of the no-slip boundary condition on the wall and that the motion 
decays to zero as z++ co, where ( r ,  8, z )  are cylindrical polar coordinates with z-axis 
along the axis of the cylinder. The velocity components can be expressed in terms 
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of a stream function $ by 
l a$  l a $  u =--- u =-- 
r a z '  r a y '  

where 

The solution of (6.2) in separable variables has the form 

$ = r Re {AI,(sr)  + BrIo(sr)} efisz, 

with the sign chosen so that $ + O  as z++ cc. Satisfaction of the no-slip condition 
leads to  the following consistency condition : 

[I1(s)l2-I0(s) I 2 ( 4  = 0. (6.4) 

Equation (6.4) is exactly the same eigenvalue equation as (4.9), and it  therefore 
follows that for z p 1 the stream function has the form 

assuming that A, + 0. Consequently, for large positive z the flow has a cellular 
toroidal vortex structure. The branches of = 0 which span the cylinder are the 
boundaries of the cells, and their equations are given asymptotically by (4.12) with 
r replacing 7. Likewise, the points of separation on the cylinder are given by 
r = 1, z = z,, with z, determined from (4.14) when & is replaced by z,, and the 
positions of the stagnation points on the axis can be found by replacing tM by zM 
in (4.13). The angle y at which the flow separates from the cylinder is given by (4.15). 
Thus, for z + 1 ,  the flow separates from the wall of the cylinder a t  an angle of 45.25'. 
The distance zM - z, measures the maximum displacement of the separation curves 
from the radii through separation points. It is a constant and is given by 

zM - zs = {x + [I - [el I O ( c 1 )  - 211'1(51)1)/Re (el) (6.6) 

= 0.428. 

The length of each cell is also constant, and its value is x/Re (cl) = 1.599. Figure 6 
shows the traces of the separation stream surfaces in any plane through the axis of 
the cylinder. These form the boundaries of the toroidal eddy cells. 

An obvious example of a flow satisfying the constraints of this problem is the slow 
motion of a sphere along the axis of a circular cylinder. I n  this case the flow decays 
when z+- 00 as well as when z+ + cc, so infinite systems of closed eddies form both 
ahead of and behind the sphere at sufficiently large distances along the cylinder. 

7. Discussion 
It may be somewhat unexpected that the same angles of separation should occur 

in such physically dissimilar problems as flow near a line or point of contact between 
two bodies and in the far flow field between parallel planes or flow near the vertex 
of a cusp and the far flow field in a circular cylinder. However, i t  is a simple matter 
to establish that the two types of problems are mathematically equivalent. 

Consider first' a two-dimensional Stokes flow in the (x, y)-plane. If the coordinates 
are inverted with respect to  the unit circle with centre a t  the origin, a point P ( x , y )  
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FIGURE 6. The separation streamlines for flow in a circular cylinder. The broken-line curves indicate 
the general direction of flow within the cells. 

inverts into a point P‘(x’, y‘) with 
X Y xf = - 

It therefore follows that if $ satisfies the plane biharmonic equation 

yf = - 
x2+ y2’ x2+y2’ 

then $ r  = $/(xz+ y2) satisfies 

V’4$‘ = (&+&)2$t = 0. 

Noting that x ’ ~ +  Y ’ ~  = ( x 2 +  y2)-I, it  follows that 

(7.3) 

(7 .4)  

Thus the relations connecting x, y, $ and X I ,  y r ,  $‘ are reciprocal. If, however, 
x’ p 1, yr  = 0(1) then 

1 Y’ 
X N -  x f I  Y - 2’ 

1 
giving 

Y’NE X ’ N -  
X2 ’ X ’  

and identifying x’ with &j and y’ with $6, (2.6) are recovered. Thus a Stokes flow in 
the neighbourhood of the origin of the (x, y)-plane in the region between the curves 
y = $x2 and y = $axz transforms into a Stokes flow in the region of the ((,r])-plane 
between ( = 1 and 6 = a for which 7 D 1. The stream functions $(x, y) and $’(c, q )  
for the two flows are related by the equation 
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Consequently if separation occurs in one flow it must also occur in the other flow and 
the limiting angles of separation as x, y+O and 7-f co must be identical. 

For axisymmetric motion, the point P(r,  8, z )  is inverted into the point P(r’,  8 , ~ ‘ )  
with respect to a unit circle in a meridional plane with centre at the origin. Thus 

Now it can be shown that if LEI$ = 0 then 

where the operator is defined in (6.2) and the prime indicates that primed variables 
replace unprimed variables. If now r’ and x’ are identified with k and $6 respectively, 
then the relations (3.3) are recovered when 6 = 0(1) ,  7 $ 1. This means that the region 
near the origin r = z = 0 bounded by the surfaces z = $2 and z = $r2 is mapped into 
the region between the planes E = 1 ,  a for which 7 B 1. The relation connecting the 
stream functions for flow in the two regions is 

which is confirmed on comparing (3.9) and (3.10) with (5.12) and (5.13) respectively. 
If, however, 6 9 1, 7 = 0(1), (4.3) are recovered, and the equivalence of Stokes flow 
near the vertex of a conical cusp and the flow in a circular cylinder at a great distance 
from the generating disturbance is established. The relation between the stream 
functions is now 

lim $(v,  0, z )  = 8 lim 6-3$’(6, 0,  v), 
r,z+o 6-00 

which is confirmed on comparing (4.11) with (6.5). Again separation in one flow 
implies separation in the other flow with identical limiting angles of separation when 
r ,  z+O and c+ a. 

(7.8) 

The author would like to thank Professors H. Brenner and K. B. Ranger for 
stimulating discussions on this work and Mr W. Hackborn for making available 
numerical results prior to publication. 
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